Effect of rotation on confinement

FP&T TFTR

Steven H. Batha,† S. D. Scott,§ D. R. Mikkelsen,§ C. C. Petty,‡ E. J. Synakowski,§ G. Taylor,§ and M. C. Zarnstorff§

(Rapporteur: E.J. Synakowski, poster P3.033)

†Fusion Physics & Technology, Inc. §Princeton Plasma Physics Laboratory ‡General Atomics

Presented June 11, 1997 at the 24th EPS Conference on Controlled Fusion and Plasma Physics

Summary

- L-mode toroidal velocity and field scans
- Result: even modest flow shear can have a significant effect on transport
- Preliminary analysis shows ion energy confinement affected most strongly
- In highly rotating supershots:
 - $-\tau_E$ better with slight co-injection
 - significant improvement of local χ_i with corotation

Motivation

FP&T

TFTR

- Toroidal rotation shear is correlated with enhanced confinement
 - H-, VH-, supershot, and reverse shear confinement modes
- Conjecture: radial electric field shear stabilizes turbulence
- ITER global database and ρ* scaling
 - mostly with unidirectional beam injection
 - Do sheared flows affect the "usual" confinement?

Radial electric field shear: Some definitions

- Force balance: $E_r = \nabla P / nZe + V_t B_p V_p B_t$
- ♦ Shearing rate: $\gamma_{ExB} = \frac{RB_p}{B_t} \frac{\partial (E_r/RB_p)}{\partial r}$
- When pressure gradient is small:

$$\frac{\gamma_{ExB}}{\gamma_{lin}^{max}} \propto M \frac{B_p}{B_t}$$

- where M is the toroidal Mach number
- Does modest rotation reduce transport?

L-mode experiment: Outline

- Measure effect of rotation and toroidal field on confinement
 - vary Mach number by changing direction of injected power (co- or counter- to I_D)
 - repeat at lower toroidal field at fixed q(a)
 - test at two different values of ρ^*
 - not a ρ^* scan: did not match β or ν^*
- Match edge density and temperature
 - confinement is sensitive to edge effects

L-mode: Strong global τ_E scaling with rotation

- Both co- and ctr- injection improved over balanced
- Effect is stronger at low magnetic field

L-mode: High-field confinement improved with co-injection

FP&T TFTR

τ_E better with co-injection

than balanced

 reduced beam power needed for pure co-inj.

 good match of edge and central density & T_e

L-mode: Low-field confinement even better with co-injection

FP&T TFTR

• τ_E better with co-injection than balanced

- "balanced" here is slightly ctr-dominated
- less co-power is needed to match power deposition profiles due to beam-orbit effects

L-mode: Core ion heat confinement improves with rotation

FP&T ◆ good match of density and T_e profiles

confinement improvement seen in T_i

L-mode: Kinetic analysis

- Rotation increases thermal β
 - especially in ions
- M 0.3 achieved, n_e & T_e profiles matched

L-mode: Future plans

- Detailed kinetic analysis
- Determine correlation between flow shear, local χ_i , and global τ_E
 - include beam-orbit effects, etc.
- Comparison with theory
- Higher rotation can be obtained with "supershot" plasmas
 - extend Mach number to 0.8
 - strong local effect observed
 - global effect weakened

Supershots: Maximum global τ_E not at zero rotation

- Optimum τ_E is always found for slight co-rotation
- Classical beam effects lower τ_E in highly rotating plasmas
 - lower beam penetration
 - less beam stored energy
 - less heating because more pushing

TFTR

Supershots: Local transport improved strongly with rotation

FP&T

Net Beam Direction

0.0

1.0

-1.0

- Local χ_i improved by factor of 10 for all co-inj.
- Supershots have features not anticipated in ITER
 - low edge particle influx
 - high T_i/T_e
 - peaked density profiles
 - core ion heat flow dominated by convection

Conclusions

- L-mode: Rotation & field scaling tested
- Even modest rotation (M = 0.3) can have an effect on transport
 - full field: 20% increase of global $\tau_{\rm E}$
 - half field: 50% increase of global τ_F
- Global τ_E and ρ* scaling deduced from rotating plasmas could be misleading for ITER
- Supershots: Toroidal rotation has a pronounced effect on local χ_i

Outline

- L-mode experiments to test scalings
 - pressure gradient small
 - vary toroidal rotation
 - co/ctr injection of neutral beams
 - vary toroidal field at constant q(a)
- Comparison with supershot experience

Supershot experience: Need better comparison for ITER scaling

- Supershots have features not anticipated in ITER
 - high T_i/T_e, higher Mach number
 - peaked density profile
 - high Z_{eff} (3.8), low $n_{i,thermal}/n_e$
 - ion heat flow dominated by convection in core
- Comparable L-mode experiment needed to assess possible effect in ITER